Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)σ-Hole bonding interactions ( e.g. , tetrel, pnictogen, chalcogen, and halogen bonding) can polarize π-electrons to enhance cyclic [4 n ] π-electron delocalization ( i.e. , antiaromaticity gain) or cyclic [4 n + 2] π-electron delocalization ( i.e. , aromaticity gain). Examples based on the ketocyclopolyenes: cyclopentadienone, tropone, and planar cyclononatetraenone are presented. Recognizing this relationship has implications, for example, for tuning the electronic properties of fulvene-based π-conjugated systems such as 9-fluorenone.more » « less
-
null (Ed.)Photoacids like substituted naphthalenes (X = OH, NH 3 + , COOH) are aromatic in the S 0 state and antiaromatic in the S 1 state. Nucleus independent chemical shifts analyses reveal that deprotonation relieves antiaromaticity in the excited conjugate base, and that the degree of “antiaromaticity relief” explains why some photoacids are stronger than others.more » « less
-
Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4 n + 2] π-aromatic in the ground state, become [4 n + 2] π-antiaromatic in the first 1 ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. o- Salicylic acid undergoes ESPT only in the “antiaromatic” S 1 ( 1 ππ*) state, but not in the “aromatic” S 2 ( 1 ππ*) state. Stokes’ shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird’s rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation.more » « less
-
Computed nucleus-independent chemical shifts (NICS), contour plots of isotropic magnetic shielding (IMS), and gauge-including magnetically induced current (GIMIC) plots suggest that polarization of the π-system of acridones may perturb the numbers and positions of Clar sextet rings. Decreasing numbers of Clar sextets are connected to experimental observations of a narrowing HOMO–LUMO gap and increased charge mobility in solid-state assemblies of quinacridone and epindolidione.more » « less
An official website of the United States government
